
An Agile Approach to Data Science Project Management

Ben Ziomek∗

Abstract— There is a lot of discussion, but few frameworks,
on effective AI Project Management. Industry-standard frame-
works for data analysis projects, like CRISP-DM, exist but most
are very high-level, and none are effective for managing the
development of AI products from deployment to production,
especially given the unique challenges of maintaining models
in production. Even fewer are useful for understanding the
skills needed by development process participants beyond core
data science development skills. The result is that many data
science teams are focused on outputting one-off analytical
projects, rather than building long-term, maintainable prod-
ucts that directly drive business processes and goals. This
paper proposes an effective project management framework
for building production data science systems based on our
experience constructing such systems at large tech companies,
late-stage start-ups, and early-stage ventures. Specifically, this
paper proposes that a blend of CRISP-DM and the Extreme
Programming agile development methodology can serve as a
starting point for building organization-specific data science
product development processes.

I. INTRODUCTION

Searching arXiv and Preprints for "AI Project Manage-
ment" in March 2020 resulted in fewer than 20 papers
published since 2008. The only relevant ones are about the
application of AI models to general project management, not
the other way around. There is a lot of discussion, but few
frameworks, on effective AI Project Management. Industry-
standard frameworks for data analysis projects, like CRISP-
DM, exist but most are very high-level, and none are effective
for managing the development of AI products from deploy-
ment to production, especially given the unique challenges
of maintaining models in production. Even fewer are useful
for understanding the skills needed by development process
participants beyond core data science development skills.
The result is that many data science teams are focused on
outputting one-off analytical projects, rather than building
long-term, maintainable products that directly drive business
processes and goals.

This paper proposes an effective project management
framework for building production data science systems
based on our experience constructing such systems at large
tech companies, late-stage start-ups, and early-stage ventures.
Specifically, this paper proposes that a blend of CRISP-DM
and the Extreme Programming agile development methodol-
ogy can serve as a starting point for building organization-
specific data science product development processes. This
paper will step through the key insights in both CRISP-DM
and Extreme Programming, and then propose a structure that

∗ B. Ziomek is the CTO and Chief Product Officer at Actuate, a computer
vision company focused on building software to turn any camera into a
threat-detecting smart camera

combines the best of both frameworks, which were selected
due to the lightweight and flexible natures. Our approach
to managing data science product development focuses on
the empirical testing, analysis, and the constant evaluation
of algorithmic models. Because the evaluation metrics for
data science systems are somewhat different than those
for software development, this framework emphasizes the
significance of testing for model accuracy and performance
beyond what is normally captured in agile development
processes.

II. CRISP-DM MEETS EXTREME PROGRAMMING

CRISP-DM (Cross-Industry Standard Process for Data
Mining) is an industry-proven methodology that offers a
structured approach to planning a data mining project. The
framework excels in aligning data mining tasks with specific
business needs and objectives. While CRISP-DM works
well for data mining projects, its structure is too rigid for
an agile organization, and it completely omits the focus
on testing and iteration that is necessary when building
data science or machine learning systems for production
rather than one-off data analysis projects. As it says in the
name, CRISP-DM is a data mining framework, not a data
science product development framework, and thus requires
modification to effectively frame development processes for
production models.

A. CRISP-DM Overview

CRISP-DM is broken up into six phases intended to give
structure to any data mining project, from strategic planning
to final implementation and evaluation:

1) Business Understanding: The first stage of the CRISP-
DM process is to clearly identify the business objectives
of a project and translate them into data science goals.
Assessment of the company’s current situation in terms
of resource availability and any other constraints and
possible contingencies must be addressed so trade-offs
can be evaluated accurately. This phase should end with
an initial project plan that includes step-by-step plans
for the remainder of the project.

2) Data Understanding: All the data identified as project
resources are collected and analyzed for relevance and
quality.

3) Data Preparation: Data is selected, normalized, and
clean to form a final analysis dataset from the initial
raw data evaluated previously.

4) Data Modeling: Many different modeling techniques are
tried and models are trained.



5) Evaluation: Model results are evaluated with respect
to the business goals outlined in Phase 1. The key
question is if the data mining results properly achieved
all intended objectives or if an important task/factor was
been overlooked.

6) Deployment: Data mining results are compiled and
a plan for their use is assembled. These results and
insights should then be presented and documented in
a viable manner for stakeholders and management.

B. Limitations of CRISP-DM

Though the CRISP-DM methodology offers a strong func-
tional blueprint for conducting analytics-oriented data mining
projects, it lacks the focus on testing and productization
that is necessary for the deployment of robust data science
systems. Its waterfall-style “try everything” approach results
in unproductive data science teams and neglects to utilize
the domain knowledge and heuristics that all strong data
scientists possess. At the same time it decouples development
from testing, resulting in long feedback cycles that limit flex-
ibility. Lastly, “deployment” in CRISP-DM basically means
producing a document or deck. Anyone who has worked in
an organization knows that decks are where strong analysis
goes to die.

While it works for data mining projects, CRISP-DM is too
rigid for data science products, which require a combination
of deductive and empirical processes. CRISP-DM also offers
little to no guidance for how model testing should be
performed for maximum ROI (Return on Investment). This
is where agile development comes in.

C. Lessons of Agile Software Development

While the existing data science literature is almost silent
on the subject of production systems, luckily the software
engineering world has spilled gallons of ink trying to find
efficient project management frameworks beyond traditional
Waterfall Development.

Over the last 20 years the tech industry has realized wa-
terfall project management’s inherent unsuitability for cloud
software development and data science project management.
Because waterfall methodologies follow a linear sequence of
processes that require the completion of the previous phase
before moving on to the next, they are far too inflexible for
projects that require iterative feedback and testing.

Agile Development is a key innovation that serves as our
starting point: The paradigm is flexible enough to be used for
rocket science, and so should have no problems being applied
to data science. However, modifications are still required.
Despite the similarity in tools, software development and
data science have key differences that limit the applicability
of some of the more baroque aspects of development pro-
cesses, such as scrum. We can’t wholesale import many of
these ideas into data science and machine learning projects
without closely examining their value. As such, we start by
investigating one of the earlier and more lightweight versions
of agile development, Extreme Programming for lessons that
can be applied to data science.

Agile development’s focus on communication, people, the
product, and flexibility make it much more suitable for the
changing demands of the consumer market, and the fast-
moving cloud and data science fields, allowing organizations
to better hit the quickly-moving target of marketplace suc-
cess. The Extreme Programming model, first proposed in
the eponymous book, is one of the earliest, most portable,
and most flexible of the Agile frameworks. We focus on
adapting it to data science because it is unburdened by the
over-optimization of more recent frameworks, allowing us to
more easily adapt its processes towards data science systems
rather than software development.

D. Extreme Programming (XP) Core Principles

As a form of agile development, Extreme Programming
presents a set of principles that address quickly dynamically
changing software requirements and project risk mitigation.
The framework for Extreme Programming is based on five
core principles with respect to the five values of Communi-
cation, Simplicity, Feedback, Courage, and Respect:

1) Rapid Feedback: Software development is inherently a
team sport, and direct-to-face and direct-to-consumer
communication are critical. Unlike CRISP-DM, where
the roles of strategy and engineering are separate, XP
requires the programmer to understand the business
objectives in order to build the technical solution.

2) Assumed Simplicity: Code should be written in the sim-
plest possible form that solves the immediate problem
while enabling future refactoring as needed.

3) Assumed Simplicity: Code should be written in the sim-
plest possible form that solves the immediate problem
while enabling future refactoring as needed.

4) Incremental Changes: Rather than trying to define a
product up front, make small, incremental changes in
response to constant consumer feedback. This allows
the customer to have more control over the development
process, resulting in better business outcomes.

5) Embracing Change: Accept and tackle changing con-
sumer requests with open arms. If a client makes a
proposal for changes, the team ought to support this
decision and incorporate them into future work as
quickly as possible.

6) Quality Work: Work collaboratively as a team with the
common goal of producing a quality product.

E. Gaps in Extreme Programming

The main drawback of the Extreme Programming ap-
proach is that the methodology focuses extensively on de-
ductive reasoning, direct customer feedback, and the human-
driven aspects of coding, rather than empirical testing. This
is in part why we’ve selected it as a starting point for process
development: CRISP-DM’s failure to utilize heuristics is one
of its biggest gaps, and Extreme Programming effectively
plugs it. That said, empirical testing is key to building data
science systems, and we need to add it back in. Building
different models is often less costly in data science than

2



engineering, and that needs to be taken into consideration
in our approach. Our proposed framework offers a hybrid
approach to both methodologies to better meet the needs of
deploying data science systems for production.

III. THE CORE PROCESS

Rather than reinventing the wheel, our proposed process
combines the structured, empirical, and sequential nature
of CRISP-DM with the best practices and heuristics-based
approach of Extreme Programming. This marriage of frame-
works acknowledges how data science product development
is moving and more towards software development while
also recognizing its unique character:

1) Define Business Goals: Identifying key business goals
early in the project is critical to ensure subsequent
development is focused on business impact. “Business”
is a key word: While novel analytical approaches can
be valuable for model performance and team morale,
they should always take a back seat to building a useful
product. To ensure that development remains on track,
this stage should involve a very initial exploration of
the data and compute resources that are available to the
development process and align business goals with what
is possible at a high level given available resources.

2) Brainstorm Approaches: Once goals have been deter-
mined, the team must determine which frameworks
or methodologies are most suitable for this project.
This stage leans heavily on Extreme Programming:
Ideally, this stage of the process will move quickly,
with individual team members proposing best practices
based on their experience, recent research, and the data
available. In the interests of speed, the best ideas are
simple, easy to implement, and easy to build on top
of. Usually this stage will result in more than one
interesting approach. All of them should be pursued at
least through the next stage to maximize output. Once
ideas have been generated, they should be aligned with
the business goals and available resources to determine
an initial, quantified set of metrics that will determine
how different analytical approaches compare to one
another.

3) MVPs: MVPs, or minimum viable products, are a
hallmark of the modern tech industry, not just in soft-
ware development but also in business ideas. The core
concept is that building a small, minimally functional
prototype of a system is the most efficient way to test
the core functionality of a system before allocating
substantial resources to an approach. As such, once a
set of approaches has been selected, the team should
move as quickly as possible to build initial versions
of the selected models. The key to building successful
MVPs is to architect them so they can be used as an
initial performance benchmark and be further developed
to improve initial performance, allowing maximum
reusability once an analytical approach is determined.

4) Initial Evaluation: Once MVP models are functional,

they should be tested using realistic data across the
business metrics that have been tested. The business
element again is critical: While standard data science
metrics such as mAP and F1 are important, they should
be mapped to the key business outcomes in the same
way that high frequency traders evaluate their models on
profit rather than accuracy. That said, business metrics
are not the only elements that should be considered:
Beyond them, the team should have a wide-ranging
discussion covering the scalability and maintainability
of each model, including the compute resources and
environment necessary to run them and the ability to
re-train the model given new data. The goal is to come
to a consensus of which MVP would best balance the
costs and benefits to the business if it is built into a
full-scale product.

5) Train: Self-explanatory: We then train the full-scale
system so that it can best tested against a full set of
business metrics.

6) Testing and Continuous Learning: The final phase of
this process is testing. We end here because much
like motion pictures, a data science product is never
finished, only abandoned. This will make more sense
as we break the testing process down into its three
key sub-categories: data testing, synthetic testing, and
production testing:

a) Data Testing: Testing a proposed product on a full
suite of business-focused metrics can be very time-
consuming. As such, it’s important to select a sub-
set of data that can directionally reveal a model’s
performance. This is similar to a validation set in
traditional data mining approaches, and it’s likely the
same dataset you used to evaluate MVPs. The data
test should be scoped to provide as much information
as possible about a system’s performance on business
metrics while being very easy to run.

b) Synthetic Testing: This is where things get seriously
detailed-oriented and metric-focused. Once a model
passes an initial sniff test, you stress test it with
edge cases. A strong synthetic test will include every
scenario that the team has previously seen and all
those it can imagine. As such, synthetic tests may
require generating data, including with GANs or
similar analytical approaches. The results from a
synthetic test should give a nearly complete view of a
model’s retroactive performance on everything the or-
ganization can imagine appearing as input variables.

c) Production Testing: Of course, reality is stranger
than fiction, and real-life model deployments will
inevitably encounter input variables beyond anything
the team could have imagined when generating a
test dataset. While ideally model performance at this
stage should closely align with earlier testing, the
real world has a way of throwing curve balls at any
system you put into production. This is also when
you can get a good view of how much compute and

3



storage a model takes: For many applications this
type of computational performance is as important
as a data science product’s analytical performance.
This is why testing a model on live data is always
the last, and most important, phase of building a data
science product. Early on in product development
this may just mean that you put a model into full
production while closely monitoring its performance.
When you have a strong model in production, you
should run candidate replacement models in parallel
for significant amounts of time before switching them
over. Never underestimate the real world’s capability
of surprising you.

A. Key Differences

The key difference for our framework when compared to
other industry-proven paradigms is that it is very production-
focused. Models like CRISP-DM fail to address key points
that directly affect production, such as early evaluations
of computation-inference performance trade-offs. Testing in
multiple tiers is also critical for production; Data-only tests
are often sufficient for data exploration and analysis projects,
but don’t come close to being sufficient for production
systems. Similarly, putting models into production can be
time-consuming and costly, even with efficient deployment
systems. This means that testing must be structured to
maximize learning while minimizing costs.

B. The Omission of Deployment

While this was covered in part in step 6, Test, it’s worth
reiterating that deployment was omitted as a specific step
because its inclusion implies a type of finality that doesn’t
exist in data science development. All models should always
been under constant evaluation, especially because input
paradigms can shift at any time and models may need
adjustment to continue to perform well.

IV. SKILLS REQUIRED

Effective and efficient development and deployment of
data science systems calls for a high level of both business
and engineering skills. Models like CRISP-DM are very
focused on the model-building stage, with business stake-
holders mainly involved in the initial planning and final
evaluation stages. When running a data mining project, the
main skills required are raw modeling, with some amount of
business insight in the exploratory phase. When models go
into production, especially in an AI context with significant
computational requirements, a team that over-indexes on raw
modeling talent inevitably runs into challenges:

1) Lack of business context understanding can cause de-
velopment to drift away from core business outcomes
and objectives

2) Lack of business operations and/or strategy understand-
ing can limit the teams’ ability to prioritize technical
approaches. Rather than using heuristics and estimates
to prioritize analytical approaches, teams may build

all models for comparison, slowing development and
increasing costs.

s noted above, testing needs to be as realistic as possible
within the constraints of computational costs, production
stability, and effort to put into development environments.
This means data scientists either need more software engi-
neering skills or need to forge close partnerships with the
infrastructure engineering team. It is very unlikely that an
individual will have all of these skills; Business-focused data
scientists, and engineers with statistical training definitely
exist, but come at a premium, and even such people won’t
be able to deliver in isolation.

As such, the best approach is to construct a "pod" consist-
ing of at least one data science specialist, and either business-
and technically focused team members or representatives
from a strategy, operations, and/or engineering team.

V. IMPLEMENTATION

This framework is high-level, and charts out steps, not
how to manage teams to deliver them. This leaves things
like detailed project management and progress tracking up
to individual team. That said, through discussions with data
scientists experienced in enterprises, growth-stage compa-
nies, and early-stage enterprises, there are a few clear best
practices.

The key is that most data science projects doesn’t require
sprawling teams for successful delivery. While exceptions
exist, particularly the core engines underlying search projects
and pricing engines, most projects work best when scoped
for a team sized in the single digits. As such, while formal,
two-week agile sprints can work well, they are often too
heavyweight for small teams. We have found that one-week
cycles that map each week’s priorities to the overarching
project plan makes the most sense. A single Project Manager,
Product Manager, or Scrum Master should manage meetings,
allowing each contributor to set goals so long as they fit into
the overall structure laid out above.

One-week cycles generally work well at least as feedback
and accountability periods, if not formal project management
units, because many of these steps are difficult to complete
individually, except perhaps steps 1 and 6. Traditional two-
week sprints often lead to different analytical approaches
drifting dangerously far apart. Kanban is also an effective
method of managing teams to deliver data science in an
agile framework, if teams prefer continuous flow to discrete
sprints. Whatever specific timing and planning system is
used, getting the entire pod together 1-3 times a week is
critical for efficient task allocation and the accomplishment
of things like prioritizing different analytical approaches, as
different teammates often have very different perspectives.

VI. CONCLUSION

Data science, especially in the deep learning subfield,
has moved extremely quickly over the last few years. An-
alytical performance in computer vision, natural language
processing, and other fields is leaps and bounds ahead of

4



even the most optimistic projections at the beginning of
the millennium. At the same time, management frameworks
have not kept up: Too many data science teams are overly
project-focused and move from problem to problem without
getting clear feedback of if their work is having any type of
business impact at all. This results in business owners not
having a clear idea of how data science teams can impact
their organization, and leaves data science sidelined. This
is a problem for almost all organizations, and for society
at large: It’s a missed opportunity when a technology that
has the potential to increase the efficiency of almost every
workflow is not used to its fullest. This framework aims to
combine best practices from lightweight data mining and
agile software development frameworks into a new model
that can enable data science teams to move from delivering
one-off projects to valuable, maintainable projects that can
deliver ongoing business impact.

REFERENCES

[1] Beck, Kent, and Cynthia Andres. Extreme Programming Explained.
Addison-Wesley, 2006.

[2] Dam, Hoa Khanh et al. “Towards effective AI-powered agile project
management.”2018. arXiv 1812.10578.

[3] Elmousalami, Haytham H. “Comparison of Artificial Intelligence
Techniques for Project Conceptual Cost Prediction.” 2019. arXiv
1909.11637.

[4] Greene, Jennifer and Andrew Stellman. Learning Agile: Understanding
Scrum, XP, Lean, and Kanban. O’Reilly Media, 2013.

[5] IBM Knowledge Center. CRISP-DM Help Overview. 2012.
[6] Schwalbe, Kathy. Information Technology Project Management. Cen-

gage Learning, 2015.
[7] Sutherland, Jeff. Scrum: The Art of Doing Twice the Work in Half

the Time. Random House, 2014.

5


